3,565 research outputs found

    Nutritive value of forage legumes used for grazing and silage

    Get PDF
    peer-reviewedLegume forages have an important position in ruminant production in Western Europe and with further development can play an even larger role. Red clover for silage and white clover in grazed swards lead to enhanced growth rate and milk yield in comparison with pure grasses. Much of the production benefit of these legumes relates to enhanced intake since digestibilities are not markedly different to grasses. The higher intake of legume silages reflects differences in the cell structure of legume plants which combined with high fermentation rates means that they break down into small particles in the rumen, and leave the rumen more rapidly than perennial ryegrass. Ease of ingestion leads to high rates of intake, which explains higher intakes for grazed legumes. A further benefit of legumes is the reduced rate of decline in digestibility with advancing maturity. Whilst legumes have limited effects on gross milk composition or carcass characteristics, there are marked increases in levels of beneficial n−3 PUFA. Legumes have often led to a reduction in methane production from the rumen and again, this relates to both physical and chemical differences between forage species. The high rates of release of soluble protein and of breakdown to small particles from clovers and lucerne is associated with susceptibility to bloat, which is a limitation to further exploitation in grazing systems. The high concentration of rapidly degraded protein in legumes also leads to inefficient utilisation of dietary N and increased urinary N output. Research with tanniniferous forages, such as birdsfoot trefoil and sulla, demonstrates the potential for future legumes with reduced environmental and health effects, though these particular forage legumes are not well adapted to temperate regions of Western Europe that are the focus of this review

    The variation in morphology of perennial ryegrass cultivars throughout the grazing season and effects on organic matter digestibility

    Get PDF
    peer-reviewedThe grass plant comprises leaf, pseudostem, true stem (including inflorescence) and dead material. These components differ in digestibility, and variations in their relative proportions can affect sward quality. The objective of this study was to determine the change in the proportion and organic matter digestibility (OMD) of leaf, pseudostem, true stem and dead components of four perennial ryegrass cultivars (two tetraploids: Astonenergy and Bealey and two diploids: Abermagic and Spelga) throughout a grazing season. The DM proportions and in vitro OMD of leaf, pseudostem, true stem and dead in all cultivars were determined during ten grazing rotations between May 2011 and March 2012. There was an interaction between rotation and cultivar for leaf, pseudostem, true stem and dead proportions. In May and June, Astonenergy had the highest leaf and lowest true stem proportion (P pseudostem > true stem > dead. Bealey had the highest combined leaf and pseudostem proportion 0·92, which explains why it had the highest OMD. In this study, the tetraploid cultivars had the highest leaf and pseudostem proportion and OMD. For accurate descriptions of a sward in grazing studies and to accurately determine sward morphological composition, pseudostem should be separated from true stem, particularly during the reproductive stage when true stem is present

    Gastrointestinal tract size, total-tract digestibility, and rumen microflora in different dairy cow genotypes

    Get PDF
    peer-reviewedThe superior milk production efficiency of Jersey (JE) and Jersey × Holstein-Friesian (JE × HF) cows compared with Holstein-Friesian (HF) has been widely published. The biological differences among dairy cow genotypes, which could contribute to the milk production efficiency differences, have not been as widely studied however. A series of component studies were conducted using cows sourced from a longer-term genotype comparison study (JE, JE × HF, and HF). The objectives were to (1) determine if differences exist among genotypes regarding gastrointestinal tract (GIT) weight, (2) assess and quantify whether the genotypes tested differ in their ability to digest perennial ryegrass, and (3) examine the relative abundance of specific rumen microbial populations potentially relating to feed digestibility. Over 3 yr, the GIT weight was obtained from 33 HF, 35 JE, and 27 JE × HF nonlactating cows postslaughter. During the dry period the cows were offered a perennial ryegrass silage diet at maintenance level. The unadjusted GIT weight was heavier for the HF than for JE and JE × HF. When expressed as a proportion of body weight (BW), JE and JE × HF had a heavier GIT weight than HF. In vivo digestibility was evaluated on 16 each of JE, JE × HF, and HF lactating dairy cows. Cows were individually stalled, allowing for the total collection of feces and were offered freshly cut grass twice daily. During this time, daily milk yield, BW, and dry matter intake (DMI) were greater for HF and JE × HF than for JE; milk fat and protein concentration ranked oppositely. Daily milk solids yield did not differ among the 3 genotypes. Intake capacity, expressed as DMI per BW, tended to be different among treatments, with JE having the greatest DMI per BW, HF the lowest, and JE × HF being intermediate. Production efficiency, expressed as milk solids per DMI, was higher for JE than HF and JE × HF. Digestive efficiency, expressed as digestibility of dry matter, organic matter, N, neutral detergent fiber, and acid detergent fiber, was higher for JE than HF. In grazing cows (n = 15 per genotype) samples of rumen fluid, collected using a transesophageal sampling device, were analyzed to determine the relative abundance of rumen microbial populations of cellulolytic bacteria, protozoa, and fungi. These are critically important for fermentation of feed into short-chain fatty acids. A decrease was observed in the relative abundance of Ruminococcus flavefaciens in the JE rumen compared with HF and JE × HF. We can deduce from this study that the JE genotype has greater digestibility and a different rumen microbial population than HF. Jersey and JE × HF cows had a proportionally greater GIT weight than HF. These differences are likely to contribute to the production efficiency differences among genotypes previously reported

    APEX-CHAMP+ high-J CO observations of low-mass young stellar objects: II. Distribution and origin of warm molecular gas

    Get PDF
    The origin and heating mechanisms of warm (50<T<200 K) molecular gas in low-mass young stellar objects (YSOs) are strongly debated. Both passive heating of the inner collapsing envelope by the protostellar luminosity as well as active heating by shocks and by UV associated with the outflows or accretion have been proposed. We aim to characterize the warm gas within protosteller objects, and disentangle contributions from the (inner) envelope, bipolar outflows and the quiescent cloud. High-J CO maps (12CO J=6--5 and 7--6) of the immediate surroundings (up to 10,000 AU) of eight low-mass YSOs are obtained with the CHAMP+ 650/850 GHz array receiver mounted on the APEX telescope. In addition, isotopologue observations of the 13CO J=6--5 transition and [C I] 3P_2-3P_1 line were taken. Strong quiescent narrow-line 12CO 6--5 and 7--6 emission is seen toward all protostars. In the case of HH~46 and Ced 110 IRS 4, the on-source emission originates in material heated by UV photons scattered in the outflow cavity and not just by passive heating in the inner envelope. Warm quiescent gas is also present along the outflows, heated by UV photons from shocks. Shock-heated warm gas is only detected for Class 0 flows and the more massive Class I sources such as HH~46. Outflow temperatures, estimated from the CO 6--5 and 3--2 line wings, are ~100 K, close to model predictions, with the exception of the L~1551 IRS 5 and IRAS 12496-7650, for which temperatures <50 K are found. APEX-CHAMP+ is uniquely suited to directly probe a protostar's feedback on its accreting envelope gas in terms of heating, photodissociation, and outflow dispersal by mapping 1'x1' regions in high-J CO and [C I] lines.Comment: 18 pages, accepted by A&A, A version with the figures in higher quality can be found on my website: http://www.cfa.harvard.edu/~tvankemp

    Effects of fertiliser nitrogen rate to spring grass on apparent digestibility, nitrogen balance, ruminal fermentation and microbial nitrogen production in beef cattle and in vitro rumen fermentation and methane output

    Get PDF
    peer-reviewedThe effects of two fertiliser nitrogen (N) application rates - 15 (LN) or 80 (HN) kg N/ha - to Lolium perenne dominant swards in spring, on grass dry matter (DM) intake, digestion, rumen fermentation, microbial N production and N-balance in beef cattle, and in vitro fermentation and methane production were studied. Sixteen Charolais steers with a mean live weight (s.d.) of 475 (18.4) kg, were used in a completely randomised block design experiment and offered zero-grazed grass harvested 21-d post N application. The same grass was incubated in an eight-vessel RUSITEC in a completely randomised block design experiment. The HN treatment had a 540 kg/ha higher grass DM yield, and a 20 g/kg DM higher crude protein (CP) concentration compared to LN. There was no difference (P > 0.05) in DM intake, or in vivo DM, organic matter (OM) and N digestibility between treatments. Rumen fermentation variables pH, lactic acid, ammonia (NH3) and total volatile fatty acid (VFA) concentration were similar (P > 0.05) for both treatments. Nitrogen intake was 19 g/d higher (P  0.05) between treatments. The quantity of N retained and N-use efficiency did not differ (P > 0.05) between LN and HN. Plasma urea concentration was 1 mmol/L greater (P  0.05) between HN and LN. In vitro methane and total gas output were not different (P > 0.05) between treatments. Reducing fertiliser N application rate to grass in spring reduced total and urinary N excretion, which has environmental benefits, with no effects on in vitro methane output.The author (Alan O’Connor) was in receipt of a Teagasc Walsh Fellowship, and financial support was provided by the Department of Agriculture, Food and the Marine Research Stimulus Programme (Excess N, 11/S/105)

    The Importance of Forage Legume Inclusion in Agricultural Swards to Enhance Earthworm Activity and Water Infiltration Rates

    Get PDF
    Increased grassland productivity in temperate regions has largely been achieved through perennial ryegrass Lolium perenne (PRG), coupled with large quantities of nitrogen fertiliser. However, concern is growing regarding the negative implications of excessive dependence on nitrogen fertilisers. Research has demonstrated the benefits of legume inclusion on primary productivity, however, their potential to influence other processes is less well established. Sampling was undertaken in autumn 2017 on twenty randomised plots representing five sward types, replicated four times. These had been established and managed by cutting since 2013. Sward types included: 1) PRG (250kg N ha-1 yr-1 ); 2) PRG; 3) PRG and white clover Trifolium repens; 4) 6 species mix comprised of PRG, timothy Phleum pratense, cocksfoot Dactylis glomerata, white clover, red clover Trifolium pratensis and greater birdsfoot trefoil Lotus pedunculatus; 5) species included in mix 4 with the addition of ribwort plantain Plantago lanceolate, chicory Cichorium intybus and yarrow Achillea millefolium. Mixes 2-5 inclusive received 90kg N ha-1 yr-1 . Measurements included: soil bulk density, water infiltration rates, and estimated earthworm activity via surface cast counts. Soil bulk density did not differ in response to sward type. However, highest infiltration rates were recorded within the PRG and white clover swards, with an average of 29.7 (±3.5) mm hr-1 , while lowest rates were recorded from the two PRG monocultures (2.43 (±0.5) and 4.2 (±1.2) mm hr⁻¹ for the 90 and 250 kg N ha-1 yr-1 swards respectively). Surface cast numbers differed significantly between sward types (P\u3c 0.001). Numbers ranged from 127 (±7) casts m⁻² for PRG & white clover, to 48 (±5) casts m⁻² for the PRG monocultures. Our findings indicate the importance of legume inclusion within agricultural grasslands managed under reduced nitrogen fertiliser inputs for wider ecosystem service provision

    Rendering an Account: An Open-State Archive in Postgraduate Supervision

    Get PDF
    The paper begins with a brief account of the transformation of research degree studies under the pressures of global capitalism and neo-liberal governmentality. A parallel transformation is occurring in the conduct of research through the use of information and communication technologies. Yet the potential of ICTs to shape practices of surveillance or to produce new student-supervisor relations and enhance the processes of developing the dissertation has received almost no critical attention. As doctoral supervisor and student, we then describe the features and uses of a web-based open state archive of the student's work-in-progress, developed by the student and accessible to his supervisor. Our intention was to encourage more open conversations between data and theorising, student and supervisor, and ultimately between the student and professional community. However, we recognise that relations of accountability, as these have developed within a contemporary "audit revolution" (Power, 1994, 1997) in universities, create particular "lines of visibility" (Munro, 1996). Thus while the open-state archive may help to redefine in less managerial terms notions of quality, transparency, flexibility and accountability, it might also make possible greater supervisory surveillance. How should we think about the panoptical potential of this archive? We argue that the diverse kinds of interactional patterns and pedagogical intervention it encourages help to create shifting subjectivities. Moreover, the archive itself is multiple, in bringing together an array of diverse materials that can be read in various ways, by following multiple paths. It therefore constitutes a collage, which we identify as a mode of cognition and of accounting distinct from but related to argument and narrative. As a more "open" text (Iser, 1978) it has an indeterminacy which may render it less open to abuse for the technologies of managerial accountability
    corecore